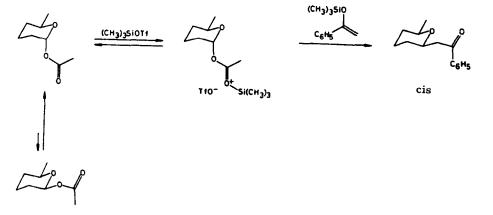
## CONDENSATION OF ENOL SILVL ETHERS WITH 2-ACETOXYTETRAHYDROFURAN AND -TETRAHYDROPYRANS<sup>1</sup>

S. Murata and R. Noyori


Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: Trimethylsilyl trifluoromethanesulfonate catalyzes stereoselective condensation of enol silyl ethers and 2-acetoxytetrahydrofuran or -tetrahydropyran derivatives.

Stereoselective preparation of carbonyl compounds bearing tetrahydrofuran-2-yl or -tetrahydropyran-2-yl substituent is a subject of current interest.<sup>2</sup> We report here that the title reaction allows an easy entry to this class of compounds.

A variety of enol silvl ethers can be condensed smoothly with an equimolar amount of 2-acetoxytetrahydrofuran or a 2-acetoxytetrahydropyran derivative in the presence of a catalytic amount (1-10 mol %) of trimethylsilyl trifluoromethanesulfonate<sup>3</sup> in dichloromethane at temperatures as low as ~78 °C. Several examples are given in Table I.

The reaction of (Z)- or (E)-enol silvl ethers exhibited moderate erythro-selectivity (entries 4-6).<sup>4,5</sup> When a ring-methylated tetrahydropyran derivative was employed as the substrate, the reaction proceeded stereoselectively to give solely the cis condensation product (entries 7 and 8).<sup>6</sup> Under the present reaction conditions, starting 2-acetoxy-6-methyltetrahydropyran equilibrates facilely to form the thermodynamically favored trans isomer which possesses the axial acetoxyl group, 7 as confirmed by <sup>1</sup>H NMR analysis. This stereoisomer is kinetically labile and suffers ready  $S_{y}^{2}$ -type displacement with an enol silvl ether aided by the action of the silvl trifluoromethanesulfonate<sup>8</sup> to afford the cis condensation product. These stereochemical features are consistent with the recently proposed "extended" type transition state.<sup>8</sup> Alternative  $S_{n,1}$ mechanism via a cyclic carboxonium ion intermediate would result in a high degree of trans stereoselection or, at least, lead to a mixture of the cis and trans isomers, in conflict with the finding.



| entry | enol silyl ether                    | acetate   | cat.,<br>mol % | <u>T</u> , °C/<br>time, h | product         | % yield | erythro/threo<br>ratio |
|-------|-------------------------------------|-----------|----------------|---------------------------|-----------------|---------|------------------------|
| 1     | (CH3)3510                           | сн3соо-Со | 5              | -78/4                     | Ji.             | 87      |                        |
| 2     | (CH3)2510                           | снасоо    | 10             | -78/4                     | Q <sup>LQ</sup> | 81      |                        |
| 3     | (снууз5ко                           | снусоо    | 5              | -78/10                    | XQ              | 96      |                        |
| 4     | кнуззыр <u>b</u>                    | снасоо    | 7              | -78/10                    | ₩ <b>Ļ</b>      | 78      | 70:30                  |
| 5     | (CH <sub>3</sub> ) <sub>3</sub> 510 | снусоо    | 5              | -78/10                    | J <sup>I</sup>  | 91      | 62:38                  |
| 6     | (CH3)3510<br>X5                     | сн3соо    | 10             | -78/16 <sup>-,d</sup>     | XYQ             | 79      | 78:22                  |
| 7     | (CH <sub>3</sub> ) <sub>3</sub> 510 | снасоо-   | 2<br>10        | -78/2                     | our             | 90      |                        |
| 8     | (CH3)3510                           | сн 3000.0 | 10             | -78/2                     | out             | 92      |                        |

Table I. Condensation Catalyzed by Trimethylsilyl Trifluoromethanesulfonate<sup>4</sup>

 $\frac{a}{2}$  A mixture of an enol silvl ether, acetate (ca. 1:1 mol ratio), and catalyst was stirred in CH<sub>2</sub>Cl<sub>2</sub>.  $\frac{D}{2}E/Z = 35:65$ . C Reaction in pentane.  $\frac{a}{2}$  Based on consumed starting material (79%).  $\frac{e}{2}$  The same stereochemical outcome with the 1:1 cis/trans mixture.

## REFERENCES AND NOTES

- Trialkylsilyl Triflates in Organic Synthesis. 14. Part 13: M. Suzuki, H. Takada, and R. Noyori, J. Org. Chem., 47, 902 (1982).
- For instance, R. E. Ireland, S. Thaisrinvongs, N. Vanier, and C. S. Willcox, J. Org. Chem., 45, 48 (1980); R. E. Ireland, S. Thaisrinvongs, and C. S. Willcox, J. Am. Chem. Soc., 102, 1155 (1980); R. E. Ireland and J.-P. Vevert, J. Org. Chem., 45, 4259 (1980); R. E. Ireland and J. P. Daub, Ibid., 46, 479 (1981).
- 3. For the synthetic utility, see R. Noyori, S. Murata, and M. Suzuki, <u>Tetrahedron</u>, 37, 3899 (1981).
- 4. The authentic erythro product of entry 5 was prepared as follows. Propiophenone was converted to erythro-3-hydroxy-7-methanesulfonyloxy-2-methyl-1-phenylheptan-1-one by sequential treatment with (a) LDA/THF, (b) THPO(CH<sub>2</sub>)<sub>4</sub>CHO/THF, (c) pyridinium p-toluenesulfonate/CH<sub>3</sub>OH, (d) MsCl/pyridine, and TLC separation of the threo/erythro products. This hydroxy mesylate was then cyclized to the tetrahydropyranyl ketone by reaction with (e) LiAlH<sub>4</sub>/THF, (f) KOH/CH<sub>3</sub>OH, (g) pyridinium chlorochromate/CH<sub>2</sub>Cl<sub>2</sub>. The aldehyde of entry 4 and thioester of entry 6 were derived to this ketone by reaction with phenyllithium (and chromic acid oxidation).
- 5. For the reasonable threo/erythro nomenclature, see: footnote 8 of R. Noyori, I. Nishida, and J. Sakata, J. Am. Chem. Soc., 103, 2106 (1981).
- C. B. Anderson and D. T. Sepp, Tetrahedron, 24, 1707 (1968); G. Descotes, D. Sinou, and J.-C. Martin, Bull. Soc. Chim. Fr., 3730 (1970).
- 7. S. Murata, M. Suzuki, and R. Noyori, J. Am. Chem. Soc., 102, 3248 (1980). See also ref. 5.